Режим генерации реактивной мощности БСК


Ниже приведена диаграмма суммарной трехфазной генерации реактивной мощности батареи БСК. Генерация реактивной мощности протекает в пределах 18,5-19,5 МВАр, в зависимости от величины напряжения на конденсаторной батареи.

Номинальная генерируемая реактивная мощности, в соответствии с ее спецификацией, составляет 15 МВАр, при номинальном напряжении 35 кВ.

С учетом того, что батарея 15 МВАр эксплуатируется при напряжении более 39 кВ, ее расчетная генерируемая мощности на этом напряжении составляет от:

Qген = Qном *
$$(Uсети / Uном)^2 = 15 * (39/35)^2 = 18,6 MBAp$$

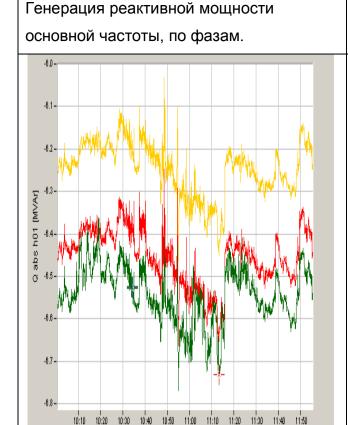
Расчетный результат соответствует данным, полученным при измерениях.

Колебания генерации реактивной мощности являются следствием колебаний сетевого напряжения. Уровень напряжений по фазам, и генерация реактивной мощности в этот период, отражены на следующих диаграммах.

www.eknis.net

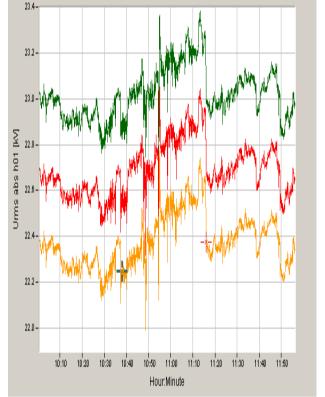
D.Plaksin

Вм.	Кільк.	Арк.	№ док.	Підпис	Дата	


DRAFT

Арк

EXAMPLE.999-01.TO


5

Зам. ін. №

Hour:Minute

Действующие напряжения основной частоты, сети 35 кВ по фазам

Действующее значение линейного напряжения конденсаторной батареи

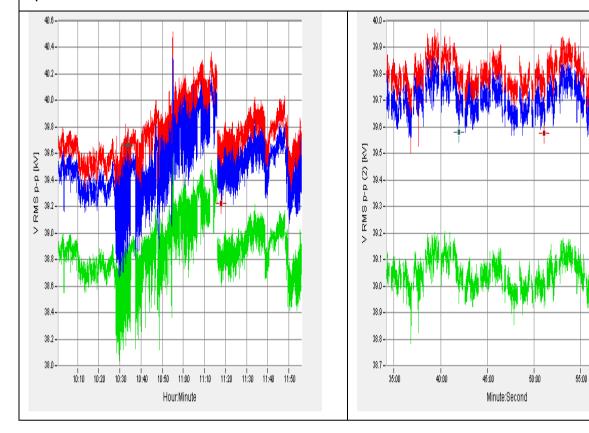
При проведении измерений, в сети 35 кВ фиксировались следующие уровни напряжений, приведенные на диаграммах ниже.

Диаграммы отражают, что напряжение в сети 35 кВ, в некоторых фазах достигает 40,2 кВ, а в среднем составляет порядка 39,5 - 39,8 кВ. При зафиксированных уровнях напряжения, батарея должна быть рассчитана при работе с номинальным напряжением 38,5 кВ.

www.eknis.netD.Plaksin

DRAFT

3м.	Кільк.	Арк.	№ док.	Підпис	Дата


Зам. ін. №

нв. № ориг.

EXAMPLE.999-01.TO

Арк

Уровень напряжений сети 35 кВ, при включенной БСК, за 2,5 часа в разные периоды времени.

Расчетная мощность короткого замыкания сети 35 кВ по данным измерений

Зафиксировано изменение уровня напряжения при включении БСК-1. В соответствии с описанным выше соотношением:

$$\Delta U = Q/S$$
к.з. * 100 %, откуда – **Sк.з. = Q/ ΔU * 100%**

Исходя из генерируемой мощности конденсаторной батареи, диаграммы которой приведены выше, Q ген. = 19 МВАр, и зафиксированной величине изменения напряжения ΔU= 2,64 кВ.

Рассчетная мощность короткого замыкания составит:

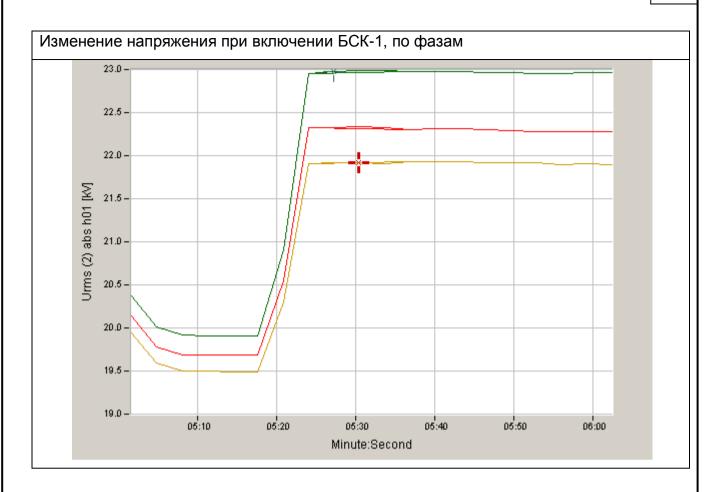
Номинальное фазное напряжение:

Uн.ф. =
$$35/\sqrt{3} = 20.2 \text{ кB}$$

Изменение напряжения при включении батареи, в % от номинального:

$$\Delta U = 20.2 / 2.54 = 7.9\%$$

Следовательно, трехфазная мощность короткого замыкания:


$$S_{K.3.} = 15 / 7.9 * 100 = 190 MBA$$

По данным энергосистемы мощность короткого замыкания составляет 95-200 МВА

www.eknis.netD.Plaksin

Зм.	Кільк.	Арк.	№ док.	Підпис	Дата

Форма тока и питающего напряжения батареи конденсаторов

Включение конденсаторной батареи в сеть может повлечь возникновение резонанса на частоте одной или нескольких гармонических составляющих, одним из условий резонанса является наличие уровня гармоники в сети, на которой возможен резонанс, до включения батареи. Тогда, за счет резонанса, гармоническая может увеличиться в десять и более раз. Резонанс возникает за счет наличия индуктивности сети и емкости батареи. Индуктивность сети определяется мощностью трехфазного короткого замыкания.

Порядок ВГС на резонансной частоте может быть получен из формулы:

$$n \approx \sqrt{S_{K.3.}/Q_{b.K.}}$$

При этом следует учитывать весь диапазон изменения мощности короткого замыкания, который характерен для данной сети. Диапазон мощности короткого замыкания для сети 35 кВ составляет: 95 – 200 МВА.

По данным измерений, приведенным выше, генерируемая мощность батареи конденсаторов Q_{Б.К.} составляет порядка 19 МВАр.

www.eknis.netD.Plaksin

3м.	Кільк.	Арк.	№ док.	Підпис	Дата

Зам. ін. №

№ ориг.

Арк

Следовательно, рассчитаем диапазон резонансных гармоник при минимальной и максимальной мощностях короткого замыкания сети:

$$n_{min} \approx \sqrt{S_{K.3.}/Q_{b.K.}} = \sqrt{95/19} = 2,23$$

$$n_{\text{max}} \approx \sqrt{S_{\text{K.3.}}/Q_{\text{b.K.}}} = \sqrt{200/19} = 3,25$$

Диапазон резонансных гармоник лежит в области близкой к 2-й ВГС и может непосредственно приходится на частоту 3-ей ВГС.

Резонанс выражается в значительном наличии в токе конденсаторной батареи составляющей резонансной гармонической, в свою очередь конденсаторная батарея нагружается не только током основной частоты, но и значительно — током резонансной гармонической составляющей. Поскольку токи высших гармонических имеют значительную частоту, они значительно влияют на дополнительный нагрев конденсаторов батареи, что следовательно приводит к ускоренному значению изоляции конденсаторов, повышенному риску пробоя изоляции элементов конденсаторов.

В свою очередь, протекание токов высших гармонических составляющих в сети 35 кВ, приводит к возникновению искажения напряжения на этой частоте. Ввиду того, что резонанс приходится на частоту 3-ей ВГС, 150 Гц, а обмотки 35 кВ трансформатора имеют схему соединения — звезда, данная ВГС в значительной степени протекать в сеть 110 кВ, а в результате не симметричности значений тока этой гармонической по фазам, так же и в сеть 6 кВ, в результате чего оказывать негативное воздействие на основные нагрузки подстанции.

На диаграмме ниже, приводится зафиксированная форма тока конденсаторной батареи:

Зам. ін. №

ппис і па

в. № ориг.

www.eknis.netD.Plaksin

3м.	Кільк.	Арк.	№ док.	Підпис	Дата

$\mathbf{F}\mathbf{V}\mathbf{\Lambda}$	MDI	E.999	Ω 1	$T \cap$
EAA	IVIPL	、に、ソソソ	-()1	. IU

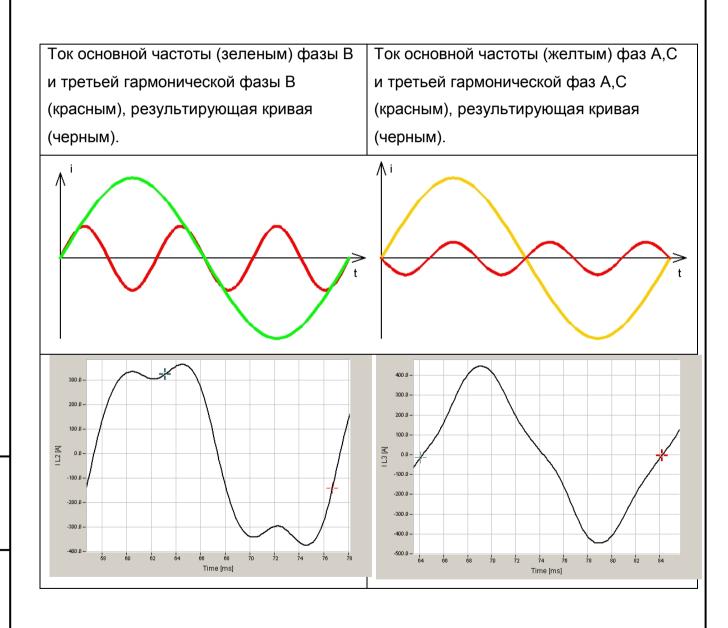
На приведенной диаграмме при токе основной частоты 280 А, действующее значение тока третьей гармонической составляет 78 А – для фазы «В» и 38-41А – для фаз «А» и «С». Как видно из диаграммы, кривые тока фаз А и С отличаются от кривой фазы В. Это обусловлено тем, что в фазе В кривая частотой 150 Гц в начальной стадии совпадает по фазе с кривой 50 Гц, а в фазах А и С кривая 150 Гц лежит в противофазе.

Зам. ін. №

ппис і па

Інв. № ориг.

www.eknis.netD.Plaksin



3м.	Кільк.	Арк.	№ док.	Підпис	Дата

Арк

Для объяснения данного процесса, возникновения искажений на частоте 3-ей ВГС в сети с изолированной нейтралью, приведена следующая иллюстрация, на котором зеленым и желтым цветом приведены формы кривых нормальной синусоиды, частотой 50 Гц, а красным цветом — вид третьей гармонической. Результирующие кривые приведены ниже и взяты непосредственно из полученных данных при проведении измерений.

Токи третьей гармонической фаз A и C лежат в противофазе по отношению к току третьей гармонической фазы B, в свою очередь — ток третьей гармонической фазы B в два раза больше по значению тока фазы A и тока фазы B.

www.eknis.netD.Plaksin

DRAFT

EXAMPLE.999-01.TO

Арк

·	·			·	
3м.	Кільк.	Арк.	№ док.	Підпис	Дата

Зам. ін. №

Підпис і дата

Інв. № ориг.

12 На кривых фазных напряжений видно прямое влияние фазных токов третьих гармоник: Кривые фазных напряжений 35 кВ и их спектральный анализ на частотах области 150 Гц: 30.0 30.0 20.0 10.0 10.0 ULI [KV] 0.0 0.0 -10.0 -20.0 --20.0 -30.0 -40.0 --40.0 70 80 90 100 110 60 120 Time [ms] 2.0 -- 2.0 1.8 -- 1.8 1.6 -1.4-1.2 -ULI [KM] 1.0 -0.8 0.8 0.6 -0.6 0.4-0.4 0.2 -0.2 0.0 - 0.0 100.0 120.0 140.0 160.0 180.0 200.0 Frequency [Hz] www.eknis.netD.Plaksin Арк **EXAMPLE.999-01.TO**

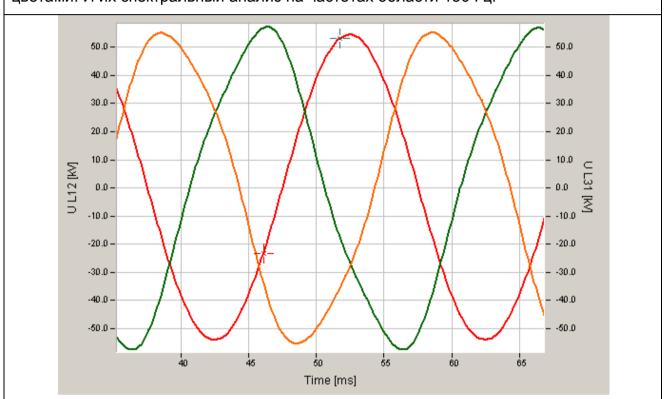
12

Зам. ін. №

Інв. № ориг.

Кільк.

Арк.


№ док.

Підпис

Дата

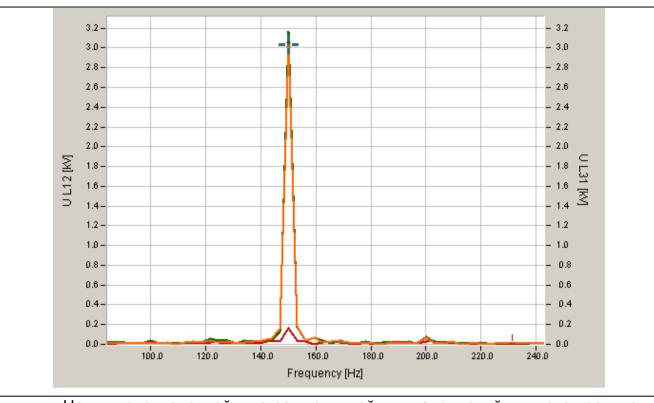
На вышеприведенной диаграмме, третья гармоническая в фазных напряжениях А и С составляет 1,2 кВ, в напряжении фазы В – 2 кВ. Столь значительный уровень третьей гармоники приводит к перенапряжениям из-за значительного увеличения амплитуды напряжений. На кривых явно наблюдается увеличенная амплитуда напряжения фазы В, по сравнению с фазами А и С, что происходит вследствие того, что в фазе В напряжение третьей гармонической на 0,8 кВ больше напряжения третьей гармонической остальных двух фаз.

Кривые линейных напряжений фаз A-B – желтым, B-C – зеленым, C-A – красным цветами. И их спектральный анализ на частотах области 150 Гц.

Зам. ін. №

ідпис і дат

Інв. № ориг.


DRAFT

www.eknis.netD.Plaksin

3м.	Кільк.	Арк.	№ док.	Підпис	Дата	

EXAMPLE.999-01.TO

Арк

На вышеприведенной диаграмме линейных напряжений и в спектральном анализе заметно преобладание 3-их гармоник в фазах А-В и В-С и практически отсутствие этой гармонике в напряжении фазы А-С, это связано с взаимной компенсацией третьей гармоники при сложении ее напряжений фаз А и С вследствие совпадений по фазе токов этих фаз на частоте 150 Гц.

Перенапряжения при включении и отключении конденсаторной батареи.

Емкости конденсаторных батарей совместно с индуктивностью сети (включающей индуктивности трансформаторов, реакторов, линий и т.п.) составляют колебательный контур, в отдельных случаях очень большой сложности, в котором при изменении схемы или ее параметров возникают переходные процессы, сопровождающиеся значительными толчками тока и перенапряжениями.

На диаграммах ниже приведены фиксируемые значение напряжений при переходном процессе, возникающем при включении конденсаторной батареи БСК-1 в сети 35 кВ. Показаны диаграммы с наибольшими фиксируемыми переходными процессами. Фиксировалось два цикла включения-отключения конденсаторной батареи.

www.eknis.netD.Plaksin

DRAFT

№ ориг.

Œ.

Зам. ін.

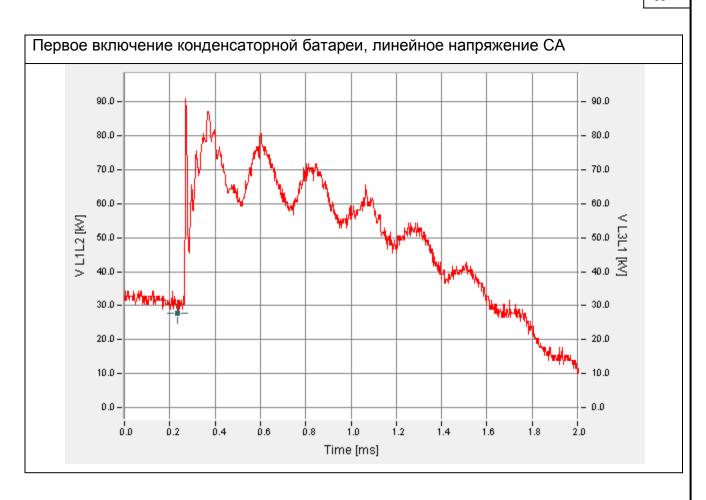
м. Кільк. Арк. № док. Підпис Дата

EXAMPLE.999-01.TO

Арк

Следует отметить, что время между первым и вторым включением составляло порядка 30 секунд. Т.е. фактически, включение батареи в сеть происходило на предварительно заряженную батарею.

В соответствии с технической спецификацией на конденсаторную батарею, ее повторное включение допускается не ранее, чем через 280 сек. после отключения.


Батарея при первом включении находилась в работе лишь до срабатывания защит, т.е. порядка 0,1 сек. Однако, в соответствии с требованиями завода-изготовителя батареи, задержка перед ее повторным включением должна обеспечиваться не в зависимости от того на какое короткое время батарея была включена.

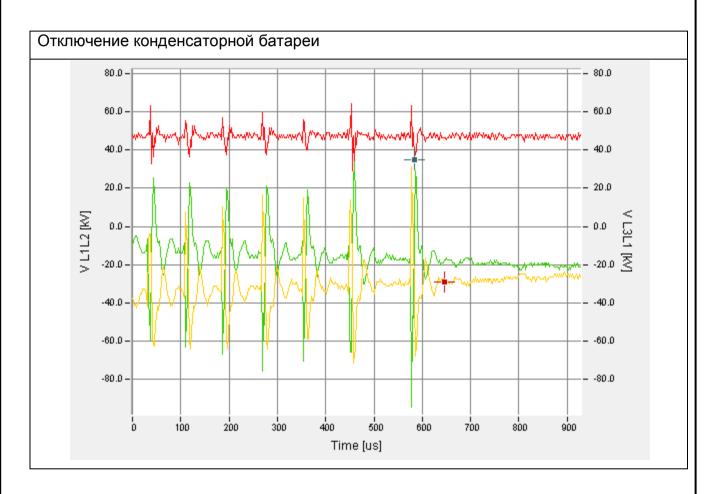
Безусловно, величина переходного напряжения при включении будет прямо зависеть от того, каковы были значения мгновенных величин напряжения, во время включения.

В результате замеров при двух включениях батареи фиксировалась величина пикового линейного напряжения до 90 кВ.

Ниже приведены фиксируемые диаграммы.

www.eknis.netD.Plaksin

Зам. ін. №

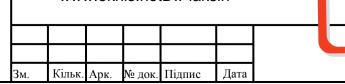

Інв. № ориг.

Арк

Ниже приведена диаграмма напряжений переходного процесса при отключении конденсаторной батареи.

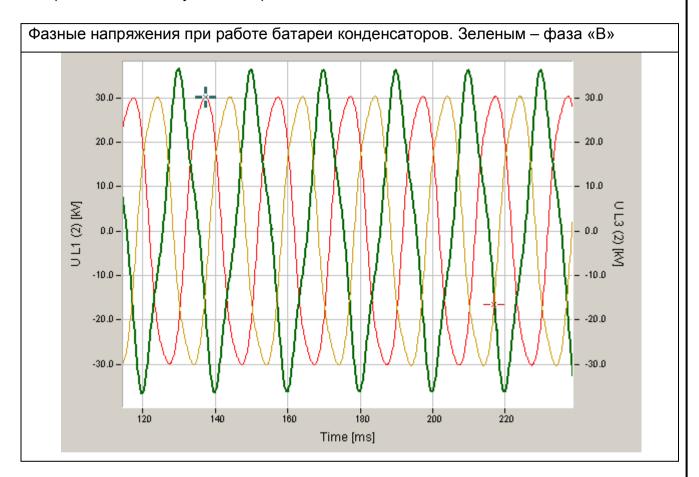
На диаграмме видны несколько периодичных перенапряжений. Переходной процесс отключения батареи в нормальных условиях сопровождается одним перенапряжением в момент разрыва дуги высоковольтным выключателем. Зафиксированный переходной процесс отражает неудовлетворительное протекание коммутационного процесса, при коммутации батареи существующим выключателем.

Перенапряжения при работе конденсаторной батареи


Ввиду рассмотренных выше резонансов при работе конденсаторной батареи, возникают постоянные перенапряжения, которые наиболее явно и существенно выражены в фазе «В». Амплитуда напряжения фазы «В» по отношению к земле, фиксировалась при измерениях до 36,8 кВ, при ее номинальном значении в 28,57 кВ, т.е. перенапряжение в фазе «В» по отношению к земле и по сравнению с номинальным амплитудным значением этого напряжения составляет порядка 1,3Uамп.ном.

www.eknis.netD.Plaksin

Зам. ін.


Підпис і дата

нв. № ориг.

Арк 17 Возможно увеличение уровня перенапряжений при возникновении более острого резонанса на частоте 3-ей гармонической составляющей.

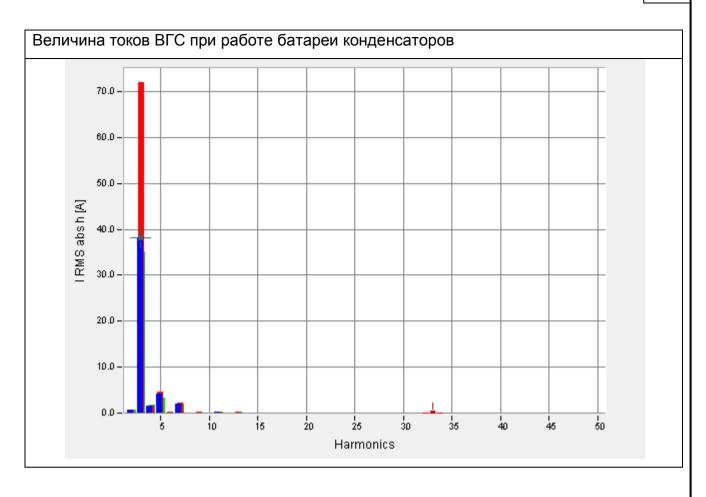
Таким образом, вследствие возникновения резонанса на частоте 3-ей гармонической, одна из фаз батарей, фактически работает с повышенным напряжением большую часть времени.

Уровень гармонических составляющих сети 35 кВ при работе конденсаторной батареи.

Вследствие возникающего резонанса на частоте 3-ей ВГС, работа батареи сопровождается протеканием в сети 35 кВ и обмотках трансформатора несинусоидального тока. Среднее значение токов гармонических составляющих, во время проведения измерений, при работающей батареи конденсаторов, приведено на диаграмме далее:

www.eknis.netD.Plaksin

DRAFT


Інв. № ориг.

Зам. ін. №

Вм. Кільк. Арк. № док. Підпис Дата

EXAMPLE.999-01.TO

Арк

Приведенный на диаграмме спектр диапазона 2-50 гармоник наглядно отображает значительный уровень 3-ей ВГС, а так же присутствие в спектре 2,4,5,7 гармонических, однако с гораздо меньшими значениями.

Протекание в сети гармоник тока приводит к преждевременному износу изоляции электрооборудования сети и её электроприёмников — повреждению высоковольтных кабелей, усложнению режимов коммутации высоковольтных выключателей.

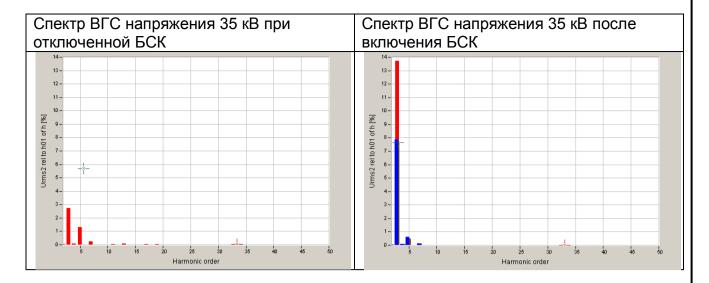
В свою очередь, протекание в сети гармоник тока приводит к возникновению гармонических в спектре напряжения, изменению его уровня несинусоидальности. В соответствии с ГОСТ 13109-97, нормально-допустимое значение коэффициента несинусоидальности для сети 35 кВ составляет до 4%, предельно допустимое – 6%. Данные измерений фиксируют значение коэффициента несинусодальности, превышающее 14% Uном! Т.е. почти в 2,5 раза превышаются предельно-допустимые требования ГОСТ.

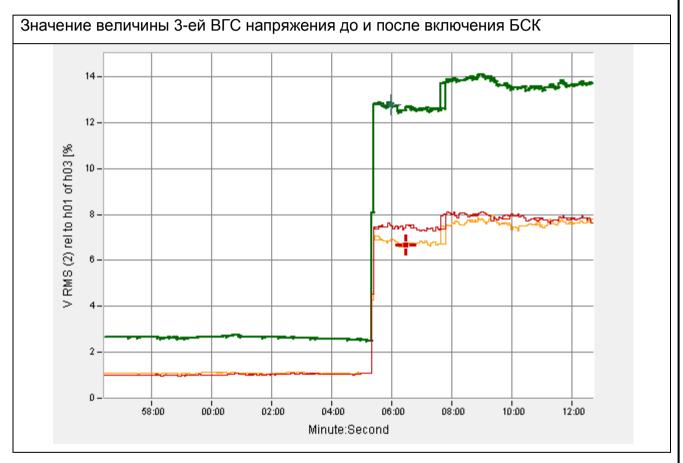
www.eknis.netD.Plaksin

№ док. Підпис

Дата

Кільк.




Інв. № ориг.

Зам. ін. №

EXAMPLE.999-01.TO

Арк

ГОСТ 13109-97 накладывает ограничение на уровень третьей гармонической в спектре напряжения 35 кВ: 1,5% - нормально допустимое и 2,25% — предельно допустимое значения. Зафиксированный уровень 3-ей гармонической в спектре напряжения достигает 14% относительно напряжения основной частоты. В линейных напряжениях уровень третьей гармонической в фазах АВ и ВС составляет 9%. Т.е. предельно-допустимые нормы стандарта превышены в 4-6 раза.

www.eknis.netD.Plaksin

№ док.

Підпис

Дата

DRAFT

3м.	Кільк.

Зам. ін. №

Інв. № ориг.

EXAMPLE.999-01.TO

Арк